TEA BREAK

What Is a WDVV-Algebra?

Alexander A. Voronov

Professor, School of Mathematics, University of Minnesota and Kavli IPMU Visiting Senior Scientist

People often ask me what a Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) algebra is. And I never hesitate to tell them. After all, the definition is as beautiful, as it is useful. And I have embedded a mnemonic rule in it, so that if you see this definition once, you will never forget it! Here we go. A *WDVV-algebra* is a graded vector space *V* with graded symmetric multilinear operations $(v_1, v_2, ..., v_n)$ of degree 2(n - 2), one for each $n \ge 2$, such that they satisfy the following associativity condition. Define a formal deformation of the commutative product (v_1, v_2) on V :

 $(w, d)_v := \sum_{k=0}^{\infty} \frac{1}{k!} (w, d, v, v, \dots, v) \lambda^k$, v appearing k times in the k th term,

for every "Witten" $w \in V$, "Dijkgraaf" $d \in V$, and all the "Verlinde brothers" $v \in V$, where λ is a formal parameter.¹ Then the condition is that the deformed bilinear product (w, d)_v must be associative. Apparently, because of some controversy associated with the name, this structure is more often called a *hypercommutative algebra*.² It is also equivalent to the structure of a *linear Frobenius manifold* on *V*.

Photo credit: Takashi Kimura of Boston University.

 $^{^{1}}$ See, $\lambda\text{-Adic}$ Topology on p. 22 in this issue.

² See Ezra Getzler, Operads and moduli spaces of genus 0 Riemann surfaces. The moduli space of curves (Texel Island, 1994), 199–230, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995.